The Slippery Slope of Concession

Jack Hirshleifer, Michele Boldrin, and David K. Levine

September 1, 2005
Introduction

- conflict is costly, why does it occur?
- both parties believe they are the probable winner conflict is the obvious consequence.
- Why do we fail to observe the expected loser appeasing the expected winner, thereby avoiding conflict and even worse losses?
- Israeli-Palestinian fight
potential loser may not be willing to make a concession, because the potential winner cannot credibly commit to avoiding a conflict

after receiving the concession winner's position strengthened, and he can demand more

loser might choose not too make the initial concession, believing it will lead to slippery slope of further demands and further concessions

in the baseline case of common beliefs and identical time preferences, and costly conflict, conflict can always be avoided by a series of small concessions, with both parties recognizing that there will be additional concessions in the future.

extension of voting franchise in England during the 17th-20th centuries.

Spanish response to Catalanian and Basque demand for autonomy
Inevitability of conflict

- Differing rates of time preference
 - potential winner much more impatient than loser
- Indivisibilities
 - fixed cost for making a concession cannot have series of small concessions
 - indivisibilities in resources under dispute
 - natural boundaries (Sudetenland)
 - ethnic mixing (Kosovo)
 - other physical or social features
The Model

two players \(i = 1,2 \)
divide single resource \(x \) - “land” or “territory”
sequence of time periods \(t = 1,2,\ldots \)
\(x_t^i \geq 0 \) amount of the resource held by player \(i \) at time \(t \)
initially there a single unit of the resource \(x_1^1 + x_1^2 = 1 \).
bargain each period over the division
impasse results in conflict
(in other words) each player may unilaterally start a conflict
in period t player i makes a demand $y_t^i \geq 0$
write $x_t = (x_t^1, x_t^2), y_t = (y_t^1, y_t^2)$, and so forth
final allocation of resources each period determined by initial allocation, demands of two players, presence or absence of a past conflict
if no past conflict

Agreement: if \(y_t^1 + y_t^2 \leq x_t^1 + x_t^2 \) then \(x_{t+1}^i = y_t^i \) and there is no conflict.

Disagreement: if \(y_t^1 + y_t^2 > x_t^1 + x_t^2 \) then a conflict takes place between period \(t \) and \(t + 1 \).

if conflict takes place game ends

given state \(x_t \) conflict implies a probability distribution over future allocations \(\mu_{x_t}^i [x_{t+1}] \)

closely related to Hirshleifer [1988] contest success function but includes the opportunity costs and damages of conflict, as well as the resources that are gained.
utility depends on resources controlled each period $u^i(x^i_t)$
continuous and strictly increasing
intertemporal preferences described by discount factors δ^i
average present value of utility
\[
(1 - \delta^i) \sum_{t=1}^{\infty} (\delta^i)^{t-1} u^i(x^i_t).
\]
average present value expected utility that results from conflict
\[
V^i(x) \equiv \int u^i(z^i) \mu^i_x(dz)
\]
assumed continuous and $V^i(x^i, 1 - x^i)$ strictly increasing in x^i
equilibrium concept is subgame perfection
three questions about conflict

➢ is conflict possible? are there subgame perfect equilibria that involve conflict?
➢ is conflict inevitable? do all subgame perfect equilibria involve conflict?
➢ if conflict not inevitable, what is the nature of the settlement paths that avoid conflict?
conflict is always possible

suppose $V^i(x) > u^i(0)$ for both players
both demand the entire pie
given strategy of the other player choice is
concede to the other player and get $u^i(0)$
“agree” to conflict and get $V^i(x)$
might not be true in more effective and realistic bargaining mechanisms
focus on the question of whether conflict is inevitable
is conflict inevitable?

is there an equilibrium in which there is no conflict, and in which no resources are discarded

easy to characterize

a sequence of demands \(y_t \) with \(y_t^1 + y_t^2 = 1 \)

for both players \(i = 1, 2 \) present value from agreement at least that from conflict

\[
(1 - \delta^i) \sum_{\tau=t}^{\infty} (\delta^i)^{\tau-t} u^i(y^i_\tau) \geq V^i(y_{t-1})
\]

where it is convenient to define \(y_0 = x_1 \).
comparison to other models

standard bargaining framework of Rubinstein [1982] and Stahl [1972]
 a model of post-conflict negotiation: losses incurred until an agreement reached then the game ends
model of negotiations designed to end an ongoing conflict
we model negotiations designed to prevent a conflict from starting
war of attrition - Rubinstein/Stahl with indivisibility
Hirshleifer [1989] considers the status quo may lie below the utility possibility frontier
one player has fish the other corn
if they have not learned to trade, conflict may be a substitute – I steal some of your fish, you steal some of my corn, we are both better off
Classification of Environments

(1) \(u^i(x^i_t) \geq V^i(x_t), \quad i = 1, 2 \) both players agree conflict undesirable
 conflict not inevitable
 both players setting \(y^i_t = x^i_t \) is subgame perfect.

(2) \(u^i(x^i_t) < V^i(x_t), \quad i = 1, 2 \) both players agree conflict desirable status
 conflict is inevitable

(3) \(V^2(x_t) > u^2(x^2_t), V^1(x_t) < u^1(x^1_t) \) or \(V^2(x_t) < u^2(x^2_t), V^1(x_t) > u^1(x^1_t) \)
 one party benefits, the other does not

we always study first case: player 2 expects to benefit from the conflict.
Main Result

beliefs are common $\mu^1 = \mu^2$

conflict is socially costly, so $V(x)$ lies below the Pareto frontier

common rate of time preference $\delta^1 = \delta^2$

conflict is not inevitable.

a sufficient condition: the Pareto frontier is strictly concave and the outcome of conflict is uncertain

while conflict can be avoided, solution not Pareto efficient if utility possibility frontier strictly concave
Conflict not Costly: Concave Case

\[\delta^1 = \delta^2 \]

expected result of conflict \(V(x_1) \) not socially feasible
only because two players have different beliefs \(\mu^1 \neq \mu^2 \)
both players think they will win
Conflict not Costly: Convex Case

\[\delta^1 = \delta^2, \mu^1 = \mu^2 \]

“this town ain’t big enough for both of us.”

can do better than \(V \) by alternation between A and B, but not time consistent
Yugoslavia with alternating presidency after Tito’s death in 1980
with collapse of communism and rise of nationalism potential for conflict arose

after the constitutional reform in 1989, Slovenia went first, Serbia went second, but refused to step down
complete indivisibility
Concession Indivisibilities

we have assumed the resource is divisible so small concessions are possible

if indivisibilities are large, it may be impossible to satisfy the loser
concession by Czechoslovakia of Sudetenland
(led to Chamberlain’s infamous “peace in our time” speech)
Sudetenland mountainous area on the border
essential to defense of Czechoslovakia
not easily divisible
concession so large that next demand by Nazi Germany was for all of
Czechoslovakia
appeasement might not work with large indivisibilities
usual conclusion is that appeasement doesn’t work
but it can with small indivisibilities